Woohf, it’s been busy here at Erowid HQ since mid December. Jan 2018 was the busiest, most challenging month of our lives, making the previous peak of November 2015 seem like a recumbent-bike cruise in a park. Things are still running over capacity, but we caught a little break this weekend with somewhat fewer deadlines.
Our January schedule resembled some sort of uncontrolled explosion. Fire, Earth, and Sylvia all had a long lingering sickness, probably the bad H3N2 flu with possible secondary infections or over-compensating reactive systems.
A couple weeks ago, I posted Flaming Toboggan Ride to the crew blog to try to capture the sensation of this experience, but it didn’t include details about what’s been going on.
We’re normally good at managing too many projects and the associated stress, and except for the flu, this would all be pretty fun. Disabling coughing and lack of sleep make everything harder.
Super short version: 30-day eviction notice on office/library; horrible flu; find a better location for the library; sign lease; begin long new-office space preparation; Pineapple Miracle; Death of a Mentor-Friend; flu symptoms rebound to be MUCH worse for Fire (coughing, unable to sleep, fuzzy brain, could barely sit upright for a couple hours); Pineapple Miracle part 2 – Challenge Drive: Fire too sick to work; a crammed week of contractors and painters trying to get new library/office ready to move in; Erowid team bibliophiles come for a day to pack books (thanks!!); whirlwind neighboring cross-training gym team moves all our 300+ heavy boxes full of books & periodicals from the previous library office to the new library office in 20 minutes. Amazing.
A day or two to get the 250K Pineapple Matching Challenge up and running; Fire slightly better; trouble with bitcoin exchanges; insanely over-capacity Earth; try to keep balls in the air; lose one of our laborer helpers because he got a real job; building shelves; unpacking books onto shelves; trying hard to meet the Jan 31 move out date.
Fail. The very nice neighbor has agreed to Feb 12 instead, but it’s still days and days of work left. Finally find an open storage unit nearby to put all the Burning Man gear and camping gear into. Huzzah! Several pickup loads of Burning Man domes, covers, cloths, misting system, etc. out of unit.
A day of shipping before we tear down the HQ shipping office. Tear down office and pack the fragile items (glass molecules!) and put them aside so the clumsy (Earth, laborers) do not break them. Move all remaining office stuff and furniture to new location.
Plan a day off after weeks with not a full night’s sleep, but things go sideways in two departments (more later).
Last weekend, two days in a row with sufficient sleep. Much, much happier!
What we had previously scheduled for January was finishing, printing, and shipping Erowid Extracts #30. But the library/office move made that impossible.
So, sorry to everyone for the couple month additional delay in getting the newsletter out!
And many thanks to everyone who has supported the project over the years to get the stars to align at these particular moments.
During the January 2018 Miracle (bloggy pre-description), it’s been hard to keep up with writing. Fire’s been posting to Facebook, but we have a bunch of photos and stories that haven’t been drafted yet. As we moved from the old library to the new, it was time to take the backlog of privacy-sensitive materials that are ready to be trashed, and do some destruction. We thought some people might enjoy seeing two of the ways we protect the privacy of submitters, correspondents, and donors.
Since we began Erowid, we’ve had the policy that we burn all paper with personally identifying information on it (envelopes, letters, donation slips) and when hard drives are retired out of our systems, they are not only data-wiped, but physically destroyed as well.
While a lot of people these days choose not to manage physical data drives, we have a complicated data delivery configuration that requires around eight physically separated drives to manage the development side of our published, in process, and unpublished data. Part of the need for so many drives is reliability of backups. Drives can be easily mirrored, and then the ‘hot’, the cold, and the backup drives can be easily swapped between secure locations.
We deliberately choose our systems based on lowest cost, highest reliability, and the requirement that no other agency or corporation can interfere with or index all of our back-end, development, and privacy-sensitive data. The Cloud is not an appropriate place or method for storing information that challenges societal norms; contradicts the putatively factual basis of criminal laws; and could possibly be banned in many parts of the world. So, our poly-hard-drive-requiring but high reliability data system does wind up with several hard drives per year that need to be retired with no possibility of data recovery.
Paper Incineration Policy
The “incineration policy” might seem a bit overboard except that we have lived in wood stove-heated houses for 22 years. So if we have to light a wood stove every winter day anyway, it’s easy to combine the two tasks.
Once the unit is up to a 12″ flue temperature of 400F (204C), the stove interior is insanely hot, up in the 900+ F range (500+ C). At this point, the blasting inferno is able to consume privacy-sensitive paper materials and turn them into a fine powdery ash.
It’s technically (and theoretically) challenging to recover any identifiable personal information from this ash. You might need to change Planck’s constant or the vector of time or something. Practically, our wood stove ash gets mixed with used cat litter and buried in our on-site waste midden.
A properly installed modern wood stove is ridiculously safe as long as you don’t put flammable things on them. (Like cats. No cats on the wood stove. It’s a rule. We use steel hard cloth to keep the cats from liking the horizontal space.) These stoves have fire-bricked interiors, engineered air flows, and double steel exterior walls with air gaps designed to cool the room-facing surfaces. But the top still gets crazy hot.
But, let’s move on…
Retired Data Drive Destruction
Stuff left over on people’s hard drives includes email addresses, names, credit card numbers, and other data and metadata that could be aggregated over time to create larger commercial value. For this reason, our policy is to destroy drives with private data instead of using simpler disposal methods, like shredding (a norm in the corporate world). We love Erowid’s supporters and we don’t want to endanger them or their privacy in unexpected ways. The process of destruction has a couple of perks.
First, it’s actually fun to destroy hard drives. As we move to solid-state drives (SSD) for storage, with all their efficiency improvements, it will be easier and less fun. Second, it yields magnets and weird e-waste beauty. This will get less beautiful as we transition to SSD.
It is really pleasurable to use perfectly suited tools* to dismantle the spinning platter drive boxes and then rip apart the internals and smash them with a hammer. It’s a bit like being a barbarian coming upon micro-technology for the first time. “How the hell do they wind that copper that thin and that tight? Oh my goodness! How strong these magnets are! Aliens, I tell you in all seriousness.”
The shape of the coil evokes alien involvement in civilization, and Burning Man<tm>. You would never see the connection unless you had the right screw driver, a hammer, and cannabis-enhanced associative ideation.
There are a number of different types of internal platters, some are more like bendy metal and others are more like glass. But all of the spinning-platter hard drives from the last 20 years have really strong magnets in them. So, we have a collection of strong magnets taken out of all the drives Erowid has had. They cover the fridge, they sit in little clumps that are slightly dangerous to take apart.
Method:
1) Put drive on table.
2) Get out pleasantly geeky screw driver collection, purchased every 10-15 years, like the *I-FixIt tool wrap:
3) Find the right screw driver and it’s physically pleasant to open the steel cases to expose the drive platters, chips, and read heads.
4) Put the now opened drive in a large Rubbermaid tub.
5) Put on safety goggles.
6) Smash as hard as you can with a good-sized hammer. Hit it over and over and over until your arm is super tired. Take a breath and use your other hand.
7) Enjoy the weird visual and physical world you’re interacting with. Holy cow, I live during the transition between stainless steel and nano-tech. Zowie.
8) Smash it again. It’s ok to feel a little anger here. It’s better to think of it as a release of stored up energy. I’m not angry, I just need to get the “SMASH” energy up enough to hammer destroy.
9) Hold the pieces up to the light and check em out. Grab pliers and yank out other parts. Examine closely.
9.5) Enjoy the reflections from the broken mirrored parts. Visionary (de)Synthesis!
10) Did I mention gloves? Once you encounter glass platters, you probably should have been wearing at least one glove.
In the next photo, note the glass shards of the platter. Note the drive head arm. Note one of the two magnets visible in the bottom left corner. The top magnets are rarely, if ever, secured with screws and are very easy to get out. Usually the second magnet requires a different driver to release the reader head arm control coil (the alien Burning Man head above), then liberating the bottom magnet often requires the removal of one or two screws.
Through the destruction process, we’ve collected a lot of very powerful magnets and turned them into fridge magnets, tarp-hold downs, etc. A 15-year-old hard drive magnet firmly supports Mr. Chekov in his charming, country-boy valiancy.
Most of these magnets are attached to ‘legs’ (aka a bracket) that you can leave on them to create an air gap between the magnet and fridge, making them much easier to move around. Super duper fun.
In November 2016, we (Earth & Fire) were driving 150 miles to San Francisco in our space cruiser (Subaru 2001 xx7xa.3.4) and happened to hear a long-form audio interview of Stephen Colbert by Terry Gross on her radio show, “Fresh Air”.
During the interview, he described his experience working on The Daily Show, The Colbert Report, and The Late Show with Stephen Colbert. Trapped in our space flight between the California gold country and the metropolis, when Colbert mentioned that he sometimes experiences “the flaming toboggan ride” (FTR), we both spoke up simultaneously and started talking over the interview. Why? The description he gives is very close to our experience of the life and work of Erowid:
To do one of these jobs, you’ve got to kind of love the flaming toboggan ride of it. You’ve got to like it because everybody else is in the toboggan with you. You’re doing it together, that’s the joy. Everybody is doing it together and at the end of it you go, ‘Hey! We survived! Pretty good show! Let’s do it again tomorrow.’
That’s it. It’s the movement forward, because it never stops. You’ve gotta love the downhill hurtle. There’s no finish line. You’ve got to just love missing all those trees that you could’ve hit today.
We’re from Minnesota and we both independently grew up with classic wooden toboggans hanging outside our homes. Family members would carry them up hills and then try to ride them down absurdly dangerous routes. Imagine yourself holding a couple of ropes attached to a set of boards that you can barely aim, hurtling down a freezing slope covered in trees, rocks, and brush. There’s one person in front who is putatively “in control”. But you might be in back, shouting, “Turn, turn, tree! Left! No!!!”, wondering if you should jump off.
The “Flaming Toboggan Ride” experience includes an illusion of control, the inability to stop the ride, and a sense of extreme responsibility for the outcome. A mixture of stimulation, fear, exhilaration, with bursts of novelty, fun, and accomplishment. And exhaustion. There’s a very real feeling that one’s physical (or metaphysical?) life is on the line, whether true or not.
When imagining the flames, are the flames shooting out of the toboggan, or the nearby trees, rocks, and brush? Left! Left!! No, right!!
We personally appreciate Stephen Colbert’s humor stylings that gave us the Flaming Toboggan Ride as a good description of our experience.
What doesn’t quite match with the Erowid HQ experience is that Colbert’s vision doesn’t include the deep sense of activism. We are kept up at night and work nearly every weekend because we believe deeply that a few more hours each day or each week could mean the difference between the future freedom of joyful consciousness, and a slightly less fabulous outcome–for individuals and the culture in general. We are, in a small way, leveraged representatives of everyone who reads this and feels a kinship with our work and goals. We are all in this together.
Although we’ve been using the FTR visualization a lot over the last year, in the last couple of weeks, we’ve been thinking that representation is missing a couple of elements. First, a lot of the ride is actually great and good things are happening and getting done. I think Colbert would include that in his silly visualization as well. But more importantly, Colbert’s version misses some kind of pedaling or difficult up-hill climb aspect of our FTR. It’s not just a ride, it’s also a physically exhausting marathon. We’re definitely not only barely-steering a downhill ride we can’t quite get off. To fit our experience, it also includes a series of sprints where the “rests” consist of slowing to a running-jog before taking another slug of caffeinated beverage (diet Coke or tea), enjoying 3 grams of properly-prepared Minnesota wild rice with Tillamook Sharp and some garlicly vegetables, a long nap, and then back on the toboggan.
Yep. That’s what our lives are (often) like. And hoo-boy is January 2018 an impressively flaming toboggan ride.
earth & Fire
PS: As of January 25, 2018, Fire and I have decided to help improve the description by using the term “Flaming Toboggan Portage”. If you haven’t “portaged” a whole canoe-camping trip, it can be difficult to communicate what that means or feels like. Imagine you’re going on a two week camping trip, carrying all of the food and supplies in gigantic backpacks. And you are mostly traveling by water, in a canoe. Now you ‘need’ to carry everything on land, up and over hills, to reach the next lake. Including the damned canoes. Carrying the canoes? Really? Yes. That’s portaging. And it’s measured in ‘rods’.
Often, during “the ride”, one is actually dismounting and carrying all of your stuff and the toboggan up and over a huge hill on a dangerously slippery (and potentially flaming) path.
As covered last week in Fentanyl Test Strips, Hot Spots, and Unhomogenized Samples, two samples reported in the November 6, 2017 batch of EcstasyData results were submitted to the lab with notes by the senders saying they had used fentanyl field tests on their sample before sending it.
The original GC/MS results for these samples (#5776 and #5779) did not reveal fentanyl. After writing about the problems associated with non-homogeneous samples and “hot spots”, we decided to use this as an opportunity to re-test both of these samples. This time, we used up 100% of what was sent by dissolving all of the sample (and not just a small portion), to make sure not to miss any potential “hot spots” in the original. That is a different method than our normal sampling protocol, meant to verify the no-fentanyl results.
On November 12, the lab reported back that the re-analysis of one of the samples returned a different result than the original analysis. The other sample’s result did not change.
Re-tested Using Modified Sample Prep Method
With most EcstasyData samples, there is material left over after an analysis. Whatever is not destroyed in the GC/MS process is stored for secure disposal after one year. This permits the lab to re-test a sample, potentially several times, if circumstances call for a re-test.
A modified method was used to re-test samples #5776 and #5779: For each of the re-tests, all the material, including the capsule, that was left over after the original analysis was placed in solvent to produce a consistent liquid sample, which was then run through the normal GC/MS process. This eliminated the “sub-sample of a sub-sample” condition that we described in the previous article.
Heroin Sample 5779: Positive fentanyl test-strip confirmed by GC/MS
The person who submitted the sample had noted the ‘Sample tested positive on both ‘DanceSafe’ and another brand of Fentanyl test strips (or cassette / dip card). Would like to know if these immunoassay fentanyl tests actually work.’ While the first GC/MS analysis did not detect fentanyl (even though a lot of the material was prepped for testing and the sample appeared homogenous), the second analysis that followed the method above did detect fentanyl.
This discrepancy in results can most likely be attributed to a hot spot or spots in the powder.
The lab also identified several other substances that they did not report in the first analysis: trace amounts of codeine, 4-ANPP, papaverine, and very small amounts of actylecodeine and 6-monoacetylmorphine. The additional very small findings are normal minor components of poorly-cleaned heroin produced from natural poppy resin. When we re-test a sample looking for very potent substances like fentanyl, we take a closer look at the trace and near-trace tiny “noise” bumps in the GC readouts.
Although we do report trace substances in most cases, street heroin is a good example of the type of material that often contains a lot of “noise” because it’s not pure, nor is it a combination of drugs; it’s a partially-synthesized natural product with lots of leftovers.
Because of the issue of fentanyl and fentanyl analogs showing up in heroin, EcstasyData has obtained a number of NPS-fentanyl analog standards and will be taking extra care to look for them in future heroin and opioid samples. Please include on your submission forms if you have concerns about fentanyl in your sample so the lab tech knows to look at what we normally consider “noise” in messy samples, and to set up the Gas Chromatograph run so that we make sure he can differentiate noise from signal at the time points where fentanyl and the known fentanyl analogs come out of the column.
The sample whose result did not change with re-analysis was for a powder represented as MDMA. Only MDMA, with no traces of fentanyl or other compounds, was detected using the method described above. The person who submitted the sample had noted a ‘strip test tested positive for Fentanyl’ prior to sending their sample in. This strip-test result was not confirmed by GC/MS.
Evolving and Improving Procedures
Although we run one of the best analytical projects of its kind in the world, this is a great example of the many types of errors and misses that can occur, and we take steps like those described here, to verify our results and change our procedures to improve the accuracy over time.
With fentanyl and fentanyl analogs haunting the opioid crisis in North America, some harm reduction field workers and users have been experimenting with what cost-effective reagent-based field tests might have to offer. One method that has been explored is the repurposed fentanyl urinalysis test-strip, where rather than dipping the test-strip in urine, it is dipped in a solution of the drug itself. A panel presentation covering the topic of drug checking and the opioid crisis was held at Drug Policy Alliance’s 2017 Reform Conference.
Since two samples included in the November 6, 2017 batch of EcstasyData results came with notes saying the sender had used a fentanyl test-strip on their sample before sending it, we’re starting to look at what that means for how we report EcstasyData results in such cases.
The question was posed by one sender, “Would like to know if these immunoassay fentanyl tests actually work.” Like many Yes/No questions that people have about drug analysis, the answer is a combination of “it depends” and “it’s complicated”.
Hot Spots
In answering the question, it helps to remember that not all powders will be completely evenly homogenized and may contain “hot spots” with uneven concentrations of a given chemical in sub-parts of the larger amount of powder or crushed crystalline material.
Powders and tablets that have more than one component to them aren’t always evenly mixed. Sometimes there’s a higher concentration of a drug in one or several areas. Think of a burrito that has hot salsa in one end of the burrito but not the other. If you bite into the burrito on one end, it’s spicy. On the other end, it’s not. Or a chocolate chip cookie — the chocolate chips might not be evenly distributed in the cookie. We’ve discussed homogenization in EcstasyData samples before when talking about traces of drugs in samples sent to the lab.
Hot spots are a bigger deal when it comes to fentanyl drugs or other similarly potent drugs, that are active at doses below a milligram but are sold in powders weighing hundreds of milligrams or grams.
Sub-samples of Sub-samples
When a powder sample is received by the EcstasyData lab, the lab tech preparing it for analysis first does a very simple partial homogenization by shaking the sample container or stirring it a little before extracting a sub-sample with a clean metal or plastic spoon. The sub-sample is then dissolved in a solvent and the technician confirms that the material dissolves completely or may take additional steps to get a fully dissolved, consistent liquid sample.
The dissolved sub-sample is then inserted into the testing equipment (the GC/MS). If fentanyl is present in that solution, then fentanyl will show up on the test, and we report it. If fentanyl is only present in a part of the sample that was not dissolved into solution, the fentanyl can not be detected.
So there are at least two steps of sub-sampling that occur before a tiny amount of material reaches the GC/MS:
1) The sender takes a sub-sample out of their stash/bag/jar at home and sends it to the lab.
2) The lab tech takes a sub-sample of that sub-sample to dissolve and inject into the GC/MS.
Someone using test-strips on powders or tablets at home is facing a similar issue of potential hot spots.
Can’t Be Sure
If a fentanyl test-strip is used to check a drug sample and the result is consistent with the presence of fentanyl (a so-called “positive”), there are several possible explanations, some including fentanyl being present, and some where there is not fentanyl present (“false positive”). A test-strip can also be difficult to read.
Some Positives are False Positives
A positive result with a test-strip can mean fentanyl is present in the sample, either deliberately, or by contamination. Tablets might have come into contact with the substance and have a tiny residue left that could trigger a positive field test.
An unknown and unknowable number of other conditions can cause false positives on urine drug screen strip-tests. Non-fentanyl drugs might trigger the field test to show positive. The problem of false positives is the reason urine strip-tests alone are insufficient to prove someone has taken a given drug in legal or employment contexts. Positives from urine screens are always double checked using an advanced technique such as GC/MS to confirm or exclude the simpler, cheaper strip test.
Test-Strip Outcome Can Be Hard to Interpret
Test-strips and other field tests often have a wide range of possible strengths of color changes. It is common to get results that are not 100% clear in what they mean.
EcstasyData can’t comment on whether fentanyl test-strips in general are useful in detecting fentanyl in drug samples. Each situation is unique.
PS: In August 2017, Erowid confirmed that the DanceSafe fentanyl test strips give false positives for buprenorphine. When mixed at a concentration of .01mg per ml water. We have another draft post that hasn’t seen proper review yet that goes over this in detail.
This last week, a sample was submitted and analyzed through EcstasyData that we clearly established was one of the three main ring-positional isomers of Methylethylcathinone (aka MEC). However, we didn’t have the lab standards on hand for this chemical, because it is the first time we’ve run into it since the supplier of lab standards we order from has stocked the three positional isomers.
Based on library matches* alone, it was impossible to be certain whether the sample contained 2-MEC, 3-MEC, or 4-MEC. We’ve run into this issue of positional isomers a bunch of times before over the last sixteen years of operating our street drug analysis project.
Luckily, Cayman Chemicals is a really great source of lab standards for NPS (“new psychoactive substances” aka psychoactive research chemicals). So we ordered reference standards for 2-MEC, 3-MEC, and 4-MEC, to find out if our equipment and lab procedures could make use of having the actual verified isomers on hand, for the purpose of confirming whether sample #5682 contained one or more of these slightly different versions of the same parent compound.
We ordered the standards on September 5th and they arrived at Drug Detection Laboratories (the lab that EcstasyData contracts with) on the 7th. The amazing DDL lab team, working on Saturday, ran the standards through their GC/MS and were able to confirm that sample #5682 contains only 4-Methylethylcathinone and none of the other two positional isomers. Yay!
There are many psychoactive chemicals with positional isomers that are difficult to reliably differentiate using GC/MS or UV absorption, even with the proper standards on hand. We’ve spent a lot of time over the last few years seeking clarity in our analysis of fluorinated amphetamines (2-, 3-, or 4-Fluoroamphetamine aka 4-FA) and the *-APB chemicals. And we’ve not been entirely successful. In most cases, one of the positional isomers is easy to tell apart from the others, but the other versions overlap in complex ways by retention time or fragmentation patterns. For MEC, the differences in column retention times for each of the positional isomers make them easy to differentiate using DDL’s Agilent GC/MS.
On another note, we also ordered a lab standard for Benzyl fentanyl this week, and were able to confirm that sample #5667 contains only Benzyl fentanyl. Less impressive, since we were pretty certain that’s what it was to begin with, but the initial match was based on comparing against other published spectra and not our own lab’s confirmation using a known standard of the same substance.
by Earth & Sylvia
Notes
*Identifying “by library match” refers to the process of comparing images of GC/MS output for a given sample to images of GC/MS output for a verified reference standard. Because equipment and lab procedures vary, to double-check identification by library match, a lab can acquire its own sample of a reference standard (if one is available), run it through the lab’s equipment, and compare the resulting images to those of the submitted sample being analyzed.
After receiving lab standards for 2-fluorodeschloroketamine, we have been able to confirm that two samples, previously unidentified, are in fact 2-FDCK.
On January 20th, The Sydney Morning Herald published “Pill testing sounds like a great idea, but there’s a catch”, by forensic toxicologist Andrew Leibie, who reasoned that field testing is not very helpful, and might be worse than nothing. Leibie seemed to both not understand what he was talking about, and to ignore some of the key benefits of having on-site testing at events where illegal drugs might be consumed.
A few days later, Monica Barratt responded with a critique of Leibie’s flawed article. In “Pill testing is still a great idea, if we use the right equipment”, she took Leibie to task for his assembling a series of partially true statements into a confused and ultimately wrong argument.
I have some points I want to repeat and add, since this is something we care (and know) a lot about.
Engaging Users
First, let me just be clear about a critical function of on-site drug checking: engaging people is the most important step in harm reduction. Once people start thinking about and taking steps to mitigate the risks they expose themselves to, everything else is gravy. Leibie argues from confused and incomplete data that on-site pill testing is ineffective and may be worse than nothing. For example, he strangely compares rates of deaths from new psychoactive substances (NPS) in the UK to those in Australia, and uses the comparison to imply on-site pill testing doesn’t reduce harm.
Reducing Harm, Not Eliminating Harm
Second, to paraphrase one of our colleagues: “It’s not about eliminating harm, it’s about reducing it. Taking drugs, like every other activity in life, is never ‘safe’.”
On-Site Testing Is Not Just Done with Reagents
Third, it’s key to understand that on-site drug checking, what we might call “field testing”, can span a wide range of different methods. The most common are reagent tests like Marquis, Mecke, Simons, etc. These are simple “rule-in / rule-out” tests. Liquids are dropped onto scrapings or dust from a sample and may or may not change color. To a person experienced in the use of reagents tests, the color and timing can tell a lot about a sample. What reagents tests can’t do is positively identify anything.
They rule chemicals in and rule them out. If a pill shaving has Marquis reagent applied to it and there is no color change, then it is almost guaranteed that the sample contains, at most, a tiny trace of MDMA. MDMA is ruled out. If the sample + Marquis changes to a dark purple-then-brown color, then MDMA is “ruled in”. This means simply that the reagent reaction is consistent with MDMA and not, as some believe (including some law enforcement personnel trained to use these field tests), that the sample has been shown conclusively to contain MDMA.
There are an unknowable number of different reasons why the Marquis + sample could change color to the typical dark purple/blue/brown. The presence of certain dyes in a sample, temperature, a reagent past its “best by” date, opioids, and potentially yet-unknown other chemicals can produce that color when a sample comes in contact with Marquis. All we can say is, if there’s a color change consistent with how MDMA would react, MDMA is ruled in as a possibility.
Better Guesses are Better
Or, in Leibie’s mischaracterization, “the proposed colourimetric on-site pill test kits provide results that are little more accurate than ‘best guesses’.”
There are a couple things wrong with the wording of Leibie’s assessment of colorimetric field reagent testing. First, “best guess” is obviously better than a bad guess. Second, in every case I can think of, the use of a reagent test would be preferable to not using a reagent test at all. The color changes are informative but not final proof. They are definitely more relevant than a “best guess” made in the absence of any drug checking methodology.
But back to the bigger error: Leibie seems to conflate on-site pill checking with field reagent testing and then draw conclusions that are out of step with current trends. A growing number of groups are using much more interesting and accurate methods to analyze and identify drugs on location at events and festivals.
European On-Site Analysis
Groups like Austria’s CheckIt!, one of the partners in our EcstasyData lab analysis project, don’t “guess”. They run a mobile HPLC-MS unit, optimized to function reliably in party settings, and use it on-site at events to do accurate identification and quantification.
Energy Control in Spain has developed procedures for using Thin Layer Chromatography (TLC) on-site, in hot and dusty tents at mega festivals. Their methodology and expertise make it possible to not only identify drugs but to get approximate quantification as well.
There are groups using mobile FTIR (Fourier transform infrared spectroscopy). FTIR has been around a long time, although as an on-site drug checking method it’s very new. FTIR is definitely capable of more than a “guess”. FTIR has a long history as a lab technique, returns results rapidly, and involves equipment small enough to potentially be workable for mobile on-site setups. FTIR can be used to positively identify chemicals and is considered a proper forensic lab method for identifying street drugs.
Near Future: Cheap Portable Spectroscopy
The utility of portable infrared or Raman spectroscopy in on-site drug checking is on the near horizon. Raman, IR, UV, and other absorption or back-scatter analytical technologies work by shooting a laser source at a sample and then reading the patterns of reflected or transmitted light and comparing that against a database of known patterns. In the next ten years, it is likely that the costs of these portable devices could drop below $500 per unit, and the databases of patterns could be extensive. Not quite ready for real world use, but… not too far away either.
On-Site Drug Checking Blocked, Banned, & Political
The primary reason these lab-grade testing methods aren’t more widespread is that the politics of drug checking are super horrid. There are critics, like Leibie, who are just confused about the usefulness and harm reduction aspects, but the much bigger problem is the world governments dominated by prohibitionist thinking. Prohibitionists actually argue that it is a bad idea to “make drug use safer” and provide “quality control for the black market”. In this very common paradigm, the goal is to make illegal drug use as physically risky as possible rather than trying to reduce the potential damage done to people.
From my perspective that’s wholly unethical and policies based on pretending people will never take MDMA and other psychoactives are not only delusional, they are mean-spirited and unjust. But that’s the world we live in.
In most countries, harm reduction work is hamstrung by the fact that it is illegal (as in go to jail) to provide accurate drug checking. It is also disallowed because event producers do not want to be perceived as “pro-drug” or possibly be held accountable for drug sales or use at their events if they’ve acknowledged that it occurs. Inviting a harm reduction team with a bunch of equipment to operate at a party is de facto condoning illegal drug use, or so goes the thinking.
The Real World: Field Reagents Better than Nothing
So, despite the viable options for offering high-quality analysis at large events, what we are often left with is young harm reduction workers equipped with small bottles of field reagents such as Marquis. Reagent tests don’t cost very much, they are affordable enough for it to be OK if they’re seized or destroyed by law enforcement, and the number one purpose for using them is still served: Engaging with people about the fact that there are risks to taking illegal drugs, that one can have a rational relationship to those risks, and the worst and most likely of those risks can be reduced with sufficient knowledge, some foresight, some help, and a little care.
Now, on to an examination of other weaknesses in Leibie’s piece:
MDMA Is Not “Often Fatal”
Leibie statement: “High doses of MDMA and methamphetamine are often fatal by themselves.”
That sentence is deceptive because of the word “often”. Water is a deadly poison. A high dose of water is often fatal by itself. Aspirin is a deadly poison. A high (enough) dose of aspirin is often fatal by itself. Leibie properly points out that MDMA and meth, even when they are of known quality and quantity, are not totally safe. And there are cases of people doing reasonable doses and still dying. But those cases are extremely rare. There is little evidence that people frequently die from taking MDMA or methamphetamine that is higher in potency than they expected.
Some tablets sold in Europe contain over 200mg of MDMA, a startlingly high dose. A small woman taking that amount of MDMA could be taking a serious risk, but the chances of her dying because on-site pill checking failed to give her clear quantitative information are nearly zero. It is very likely, in fact, that if the woman in this scenario visited a harm reduction table and asked about the tablet she was thinking of taking, she would have been immediately informed that it was a strong tablet. The information that drug checking harm reduction workers provide is not limited to whether a reagent test color change is consistent with MDMA. They provide a lot of useful info and harm reduction suggestions. So, Leibie’s point, as stated, is faulty.
On-Site Testing Is Helpful Even with New Psychoactive Substances
Leibie statement: “The greatest concern however, is that on-site tests cannot detect new designer drugs on the market, such as flakka, liquid acid or NBOMe compounds.”
(Forget for a moment that the way the sentence is worded implies acid is a “new designer drug”…) This statement is misguided because of the inappropriate conflation of “on-site” with colorimetric field reagent tests. It’s also inaccurate because the NBOMe compounds do change color and can be ruled in or out even at very low doses. LSD (acid) is also detectable using field tests. The Ehrlich reagent turns purple in the presence of LSD. This sample of liquid LSD (far right) was dropped onto paper towel and the field tests did a fine job of showing the presence of LSD.
Leibie statement: “Unfortunately, these dangerous compounds frequently are mixed with more familiar drugs, such as ecstasy, speed or ice, requiring highly advanced scientific analysis to be detected.”
This statement underscores the author’s lack of awareness that “advanced scientific analysis” is a practical option for on-site testing, if only it weren’t disallowed in most places. It also suggests a weak understanding of the field reagents he’s so strongly arguing against. Reagent field tests can rule in or rule out two of the three most “dangerous” drugs that he lists, the NBOMes and LSD (acid). For alpha-PVP (referred to as “flakka” here), he is right that it does not change color with the standard Marquis, Mecke, or Mandelin reagents. What a tremendous teaching opportunity for harm reduction workers to talk about adulterated drugs and the uncertainty of field tests (they can even point people to illustrative examples from EcstasyData, where we have reagent results side by side with the GC/MS lab findings). It seems Mr. Leibie is arguing against having those educational opportunities at large festivals.
And, while there are plenty of examples of NPS substituted for or adulterating more familiar drugs, the accuracy of the claim that this is a “frequent” occurrence is moot, since, just as the author points out that there are “no quality or consistency guarantees” for illicit drugs, there are also no representative sets of data about analyses of illicit drug samples available for public scrutiny (except maybe in the Netherlands). Law enforcement groups may analyze samples of seized drugs, but results are not typically shared with the public.
No Evidence that On-Site Testing Worsens Risks
Leibie statement: “Countries that have gone down the pill testing route do not provide any comfort that this approach works.”
Leibie makes several errors in the text he uses to support this statement. First, there is nothing like a valid apples-to-apples comparison between the different countries. Australia has a unique illegal drug market that is distinct from the UK’s. The Australian government runs one of the tightest customs operations in the world, in the confines of its own island continent, impacting Australia’s drug market much differently than the European-influenced UK. It is unclear why Leibie would feel qualified to offer a comparison of the effectiveness of unspecified relative amounts of harm reduction efforts in unspecified numbers of events with an unknown number of participants. It’s just weird. His statement qualifies as “most likely wrong”. The Netherlands are one of the only countries that has anything like a proper “pill testing route” with their DIMS project. And they don’t allow on-site lab gear at big events run by harm reduction workers.
False Sense of Security: A Real Problem
Leibie statement: “They also potentially leave consumers with a false sense of security that the party drugs they buy may be safe. It could be a deadly assumption.”
I think this is perhaps the most helpful statement in Leibie’s article. There is no question that many people misunderstand the risks of the drugs they are taking. Moreover, inexperienced use of field reagents can provide a false sense of security. People sometimes confuse lower risk with “safe”, or mistake harm reduction for harm elimination.
And it’s true that, sadly, sometimes people die after taking pharmaceuticals or recreational drugs in reasonable ways.
On-Site Testing Makes the World Better, Not Worse
Although the prominence of Leibie’s article offered a great opportunity to discuss the pros and cons of on-site testing, particularly the entirely relevant strengths and weaknesses of reagent testing, this opportunity was missed.
The author showed little knowledge of the specific area of music event or festival drug-checking. Performing tests at hot, dusty, remote events, with bass vibrations and the complexity of imaginative combinations of substances will always present challenges, but the experts running these services do tend to be well aware of these limitations.
The harm reduction projects that have been set up around the world are working within the parameters of government policies that seem at times to obstruct their efforts to serve the interest of public health. Despite all these conditions, and shoestring budgets, these groups are connecting people with specialist advice, mentors and peer support to ensure that on-site drug checking makes the world better, not worse.
Fire and I just finished watching a preview copy of The Sunshine Makers, a documentary about 1960s LSD manufacturers. We were very impressed!
The quality of the content, editing, storytelling and sound, as well as inclusion of old photos, film footage and video are all amazing, but what makes it really stand out is the voice-reenacted law enforcement records and on-camera interviews with officers about the prosecutions of Nick Sand and Tim Scully.
The film tells the Sand/Scully stories with historical details we have never heard before, and includes audio and visual styling that add depth and entertainment value. For example, cutaway animations layered with stills of buildings, revealing miniature scenes of lab work happening inside them, are super clever.
Cosmo Feilding-Mellen and his filmmaker team include a few hilarious bits, like having Nick Sand dress up in a fishing outfit, while in voiceover he recounts a story of fleeing to Canada by pretending to be a fisherman. They do a fun job of narrating a car chase, interleaving storytellers that include a police investigator who was working to imprison Nick for LSD manufacturing.
What The Sunshine Makers helps clarify is that Nick was and is still an activist. While Tim Scully started out an activist, the downside of being a black market synthetic chemist and spending years in prison have him sounding a somewhat more constrained note.
Overall, this is one of the best made and most interesting looks inside the LSD distribution ring that Sand and Scully were a part of. Check out the trailer on YouTube and see the full version once it’s released, both in theaters and video-on-demand. :]